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Understanding plastic deformation of metals is necessary for controlling deformation processes

We can explain the plasticity of metals using a plasticity theory that consists of
1. A yield function to determine when plastic flow initiates
2. A flow model which relates the applied stress increments to the resulting plastic strain 

increments 
For example deformation theory relates applied stresses to strains by a dynamic modulus using 
Hooke’s law:

𝜎 = 𝐸𝑠𝑒𝑐𝜀
𝑑𝜎 = 𝐸𝑠𝑒𝑐𝑑𝜀

3. A hardening model that describes the change in the yield criterion as a function of plastic 
strains

For example the isotropic hardening model assumes that strain hardening corresponds to an enlargement of the 
yield surface (an increase in yield stress) without change of shape or position of the surface



Multiaxial states of stress occur in all types of loadings and so do multiaxial strains

For example the strains in a tensile bar become triaxial

The state of stress around cracks is usually multiaxial and may differ from the state of stress in the 
bulk of the material

For example the state of stress at the root of a thread is biaxial but it is usually uniaxial
in the body of the bolt

Plastic deformation occurs easier under shear stresses and the stress concentration factors
change with stress state

Biaxial stress

Uniaxial stress

Multiaxial strain



Stress state around a crack in a material under uniaxial tension



We can apply our knowledge obtained from experimental data on the behavior of materials under 
uniaxial stress (as in a tension test), to multiaxial stress conditions

For example the yield stress obtained from a stress-strain diagram can be used as a yield criterion 
for materials under multiaxial stress conditions

Multiaxial stress condition may be produced by variation of the position within the bulk of the 
material (there are only normal stress and strain at the surface perpendicular to the applied normal 
stress)

It may also be produced from multiaxial stresses

Remember that the state od stress and strain at a point in the material can be identified by 6 stress 
components and 6 strain components acting on the x, y, z planes

We can find stresses and strains acting in any other direction or plane by using transformation 
equations or graphically using Mohr’s circle
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The following parameters are of importance when analyzing the yield criteria at a certain position 
in the bulk material:

• Maximum normal principal stress, 𝜎1
• Minimum normal principal stress, 𝜎2
• Maximum shear stress, 𝜏𝑚𝑎𝑥
• Effective stress, 𝜎𝑒𝑓𝑓
• Uniaxial yield strength, 𝜎𝑦
• Uniaxial ultimate strength, 𝜎𝑢

Only a few planes experience the maximum normal stress and the maximum shearing stress 
However many other planes experience a very large percentage of these quantities



Yielding depends on the magnitude of the normal and shear stresses applied to a material and also 
on the local stresses generated at some plane (slip-plane) within the material

Consider a planar material stressed in two directions

A state of plane stress exists at a point Q with 𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0. The state of plane stress is 

defined by the stress components 𝜎𝑥 , 𝜎𝑦, 𝜏𝑥𝑦 associated with the material shown:

If the material is rotated through an angle 𝜃 about the z axis, the stress components change to 
𝜎𝑥
′, 𝜎𝑦

′, 𝜏𝑥𝑦
′ which can be expressed in terms of 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 and 𝜃



Consider a prismatic element with faces respectively 
perpendicular to the x, y and x’ axes:

If the area of the oblique face is ΔA, the areas of the 
vertical and horizontal faces are equal to ΔA cosθ, and ΔA 
sinθ respectively.

The mechanical equilibrium along the x’ and y’ axes 
require that

 𝐹𝑥′ = 0, 𝜎𝑥
′Δ𝐴 − 𝜎𝑥 Δ𝐴 cos 𝜃 cos 𝜃 −

𝜏𝑥𝑦 Δ𝐴 cos𝜃 sin 𝜃 − 𝜎𝑦 Δ𝐴 sin 𝜃 sin 𝜃 −

𝜏𝑥𝑦 Δ𝐴 sin 𝜃 cos 𝜃 = 0

 𝐹𝑦′ = 0, 𝜏𝑥′𝑦′Δ𝐴 + 𝜎𝑥 Δ𝐴 cos 𝜃 sin 𝜃 −

𝜏𝑥𝑦 Δ𝐴 cos𝜃 cos 𝜃 − 𝜎𝑦 Δ𝐴 sin 𝜃 cos 𝜃 +

𝜏𝑥𝑦 Δ𝐴 sin 𝜃 sin 𝜃 = 0

The first equation is solved for 𝜎𝑥
′ and the second for 𝜏𝑥′𝑦′

as

𝜎𝑥
′ = 𝜎𝑥 cos

2 𝜃 + 𝜎𝑦 sin
2 𝜃 + 2𝜏𝑥𝑦 sin 𝜃 cos 𝜃

𝜏𝑥′𝑦′ = − 𝜎𝑥 − 𝜎𝑦 sin 𝜃 cos 𝜃 + 𝜏𝑥𝑦 cos
2 𝜃 − sin2 𝜃



After simplifications using trigonometric substitutions we obtain the normal and shear stresses on 
the rotated material as

𝜎𝑥
′ =

𝜎𝑥 + 𝜎𝑦

2
+
𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 + 𝜏𝑥𝑦 sin 2𝜃

𝜎𝑦
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𝜎𝑥 + 𝜎𝑦
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−
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cos 2𝜃 − 𝜏𝑥𝑦 sin 2𝜃

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃

The expression for the normal stress 𝜎𝑦
′ is obtained by replacing θ by the angle θ+90 that the y’ 

axis forms with the x axis.

Adding the two normal stresses we see that

𝜎𝑥
′ + 𝜎𝑦

′ = 𝜎𝑥 + 𝜎𝑦

In the case of plane stress, the sum of the normal stresses exerted on a cubic material is 
independent of the orientation of the material since 𝜎𝑧 = 𝜎𝑧′ = 0



The equations obtained for the normal and shear stresses in the rotated material under plane 
stress condition are the parametric equations of a circle

If we plot a point M in the rectangular axes with the coordinates (𝜎𝑥
′, 𝜏𝑥′𝑦′) for any given value of 

the parameter θ, all the other possible points will lie on a circle.
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2
+
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sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃

The angle θ in the equations can be eliminated by algebraic simplifications and addition of the two 
equations:

𝜎𝑥
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2

2

+ 𝜏𝑥′𝑦′
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Where
𝜎𝑥+𝜎𝑦

2
= 𝜎𝑎𝑣𝑒 and 

𝜎𝑥−𝜎𝑦

2

2
+ 𝜏𝑥𝑦

2 = 𝑅2

So 𝜎𝑥
′ − 𝜎𝑎𝑣𝑒

2 + 𝜏𝑥′𝑦′
2 = 𝑅2

Which is the equation of a circle of radius R centered at the point C of 
coordinates (𝜎𝑎𝑣𝑒 , 0)



The point A where the circle intersects the horizontal axis is the maximum value of the normal 
stress 𝜎𝑥

′ and the other intersection point B is the minimum value. Both points correspond to a 
zero value of shear stress 𝜏𝑥′𝑦′. 

These are the principle stresses.

Since 𝜎𝑚𝑎𝑥 = 𝜎𝑎𝑣𝑒 + 𝑅 𝜎𝑚𝑖𝑛 = 𝜎𝑎𝑣𝑒 − 𝑅

𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 =
𝜎𝑥 + 𝜎𝑦

2
±
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2

2
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2

The rotation angles that produce the principal stresses with no shear stress is obtained from the 
equation of shear stress

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃 = 0

tan 2𝜃𝑝 =
2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦

This equation gives two 𝜃𝑝 values that are 90 apart. Either of them can be 

used to determine the orientation of the corresponding rotated plane. 
These planes are the principal planes of stress at point Q



The points D and E are located on the vertical diameter of the 
circle corresponding to the largest numerical value of the shear 
stress 𝜏𝑥′𝑦′. These points have the same normal stresses of 

𝜎𝑎𝑣𝑒. So the rotation that produces the maximum shear 
stresses can be obtained from the normal stress equations.

𝜎𝑥
′ = 𝜎𝑎𝑣𝑒 =

𝜎𝑥 + 𝜎𝑦

2
+
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2
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tan 2𝜃𝑠 = −
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2𝜏𝑥𝑦

This equation gives two 𝜃𝑠 values that are 90 apart. Either of 
them can be used to determine the orientation of 
corresponding rotated plane that produces the maximum 
shear stress which is equal to

𝜏𝑚𝑎𝑥 = 𝑅 =
𝜎𝑥 − 𝜎𝑦

2
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+ 𝜏𝑥𝑦
2



The normal stress corresponding to the condition of maximum shear stress is 

𝜎𝑥
′ = 𝜎𝑎𝑣𝑒 =

𝜎𝑥 + 𝜎𝑦

2

Also 

tan 2𝜃𝑠 = −
𝜎𝑥 − 𝜎𝑦

2𝜏𝑥𝑦
= − tan 2𝜃𝑝

−1
= −

2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦

−1

This means that the angles 𝜃𝑠 and 𝜃𝑝 are 45 apart

So the planes of maximum shear stress are oriented at 45 to the principal planes

Example – Determine the principal planes, principle stresses, maximum shear stress and the 
corresponding normal stress for the state of plane stress shown



Maximum shear stress criterion (for ductile materials)

When a ductile material is under uniaxial stress, the value of the normal stress 𝜎𝑥 which will cause 
the material to yield can be determined simply from a stress-strain diagram obtained by a tensile 
test.

The material will deform plastically when 𝜎𝑥 > 𝜎𝑌𝑖𝑒𝑙𝑑

On the other hand when a material is in a state of multiaxial stress, the material may yield when 
the maximum value of the shear stress exceeds the corresponding value of the shear stress in a 
tensile-test specimen as it starts to yield.

Maximum shear stress criterion is based on the observation that yield in ductile materials is caused 
by slippage of the material along oblique surfaces and is due primarily to shear stresses.

In the plane stress condition the material can be represented as a point under principal stresses 
𝜎𝑎 , 𝜎𝑏



Recall that the maximum value of shear stress at a point under a centric axial load is equal to half 
the value of the corresponding normal axial stress.

Thus at yielding

𝜏𝑚𝑎𝑥 =
1

2
𝜎𝑌

Also for plane stress condition if the principle stresses are both positive or both negative, the 

maximum value of the shear stress is equal to 
1

2
𝜎𝑚𝑎𝑥

Therefore 𝜎𝑎 > 𝜎𝑌 or 𝜎𝑏 > 𝜎𝑌

If the maximum stress is positive and  the minimum stress negative, the maximum value of the 

shear stress is equal to 
1

2
( 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 )

Therefore ( 𝜎𝑎 − 𝜎𝑏 ) > 𝜎𝑌

These relations produce a hexagon in the xy plane, called Tresca’s hexagon. Any given state of stress 
will be represented in the figure by a point.



Prediction of yielding under multiaxial loading according to the maximum shear stress criterion involves the 
analysis of the octahedral planes

There are eight octahedral planes making equal angles with the principal 
stress directions
The shearing stress on these planes is given by

𝜏𝑜𝑐𝑡 =
1

3
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2

Or with non-principle stresses:

𝜏𝑜𝑐𝑡 =
1

3
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2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2

The shear strain acting on an octahedral plane is given by

𝛾𝑜𝑐𝑡 =
2

3
𝜀1 − 𝜀2

2 + 𝜀2 − 𝜀3
2 + 𝜀3 − 𝜀1

2

Or

𝛾𝑜𝑐𝑡 =
2

3
𝜀𝑥 − 𝜀𝑦

2
+ 𝜀𝑦 − 𝜀𝑧

2
+ 𝜀𝑧 − 𝜀𝑥

2 +
3

2
𝛾𝑦𝑧

2 + 𝛾𝑧𝑥
2 + 𝛾𝑥𝑦

2



Maximum normal stress criterion (for brittle materials)

Brittle materials fail suddenly in a tensile test by rupture without any prior yielding.

When a brittle material is under uniaxial tensile stress, the value of the normal stress which causes 
it to fail is equal to the ultimate strength of the material as determined from a tensile test.

When a brittle material is under plane stress, the principal stresses are compared to the ultimate 
strength obtained from the uniaxial tensile test.

Maximum principal stress criterion states that a brittle material will fail when the maximum normal 
stress exceeds the ultimate strength obtained from the uniaxial tensile test:

𝜎𝑎 > 𝜎𝑈 or 𝜎𝑏 > 𝜎𝑈

This criterion forms a square area centered on the xy plane. The criterion is based on the 
assumption that the ultimate strength of materials under tension and compression are equal, 
which is an overestimation for most materials as the presence of cracks and flaws often weaken the 
material under tension



Maximum distortion energy criterion is based on the determination of the distortion energy in a 
ductile material, which is the energy consumed by a change in the shape of the material.

Also called von Mises criterion, it states that a material will yield when the maximum value of the 
distortion energy per unit volume exceeds the distortion energy per unit volume required to cause 
yield in a tensile test specimen.

The distortion energy in an isotropic material under plane stress is

𝑈𝑑 =
1

6𝐺
𝜎𝑎

2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏
2

In the case of a tensile test specimen yielding at 𝜎𝑌

𝑈𝑌 =
1

6𝐺
𝜎𝑌

2

Thus the maximum distortion energy criterion indicates that the material yields when 𝑈𝑑 > 𝑈𝑌:

𝜎𝑎
2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏

2 > 𝜎𝑌
2

This equation produces an ellipse in the principal stress plane



It is useful to convert the multiaxial stress state to an equivalent stress

The equivalent or effective stress is the uniaxial stress that is equally 
distant from the yield surface or located on it

The effective stress or the stress intensity for an elastic material is expressed as

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2

And the effective strain as

𝜀𝑒𝑓𝑓 =
2

2 1 + 𝜈
𝜀𝑥 − 𝜀𝑦

2
+ 𝜀𝑦 − 𝜀𝑧

2
+ 𝜀𝑧 − 𝜀𝑥

2 +
3

2
𝛾𝑦𝑧

2 + 𝛾𝑧𝑥
2 + 𝛾𝑥𝑦

2

And 𝜎𝑒𝑓𝑓 = 𝐸𝜀𝑒𝑓𝑓



The von Mises yield criterion is given by 

𝜎1 − 𝜎2
2 + 𝜎2 − 𝜎3

2 + 𝜎3 − 𝜎1
2 = 2𝜎𝑦

Or

𝜎𝑥 − 𝜎𝑦
2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2 = 2𝜎𝑦

In terms of effective stress the criterion is

𝜎𝑒𝑓𝑓 =
1

2
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2 = 𝜎𝑦

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2 = 𝜎𝑦

For plane states of stress, the yield condition is the interaction of the cylinder with the principal 
stress plane, which is a yield ellipse

Notice that the von Mises criterion takes into account the octahedral shear stress

𝜏𝑜𝑐𝑡 =
1

3
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2

𝜏𝑜𝑐𝑡 =
1

3
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2



The von Mises yield criterion is visualized as a circular cylinder in the stress space

The axis of the cylinder passes through the origin of the coordinates for unyielded material

It is inclined equal amount to the three axes and represents pure hydrostatic stress for elastic 
deformations.



Yield criteria for deformation of metals under plane stress

The data for the mild steel and Cr-V steel which behave in a ductile manner agree well with the 
octahedral shear stress (von Mises) criterion
Data for cast iron which behaves in a brittle manner, agrees better with the maximum principal 
stress criterion:

𝜎1 = 𝜎𝑦



Example – Evaluate the yielding stress condition for a ductile cast iron using maximum shear stress, maximum 
principal stress and maximum distortion energy criteria.

𝜎𝑎 > 𝜎𝑌 or       𝜎𝑏 > 𝜎𝑌 or      ( 𝜎𝑎 − 𝜎𝑏 ) > 𝜎𝑌

𝜎𝑎 > 𝜎𝑈 or 𝜎𝑏 > 𝜎𝑈

𝜎𝑎
2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏

2 > 𝜎𝑌
2


