Plasticity and
Deformation Processes

Yielding criteria
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CS.032 1025 carbon (0.25% C) steel, flow
stress-strain curves at various strain rates

Temperature (7) = 1100 °C (2012 °F). Stress-strain
curves show that at higher strains the flow stress is

approximately constant. This is increasingly true at
smaller strain rates (€). Curves were obtained in hot
torsion experiments. UNS G 10250

Source: K. Lange, Ed., Handbook of Metal Forming, McGraw-Hill,
1985, p 16.11
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CS.038 1112 carbon steel, true stress-strain curves
with effect of strain rate

True stress-strain curves for 1112 steel at different strain
rates at 21 °C (70 °F). When metals are tested in tension
at different strain rates, the flow stress corresponding to a
given strain is found to increase with strain rate. The
following equation is frequently used to relate flow stress
and strain rate at a given strain and temperature: ¢ =

G, €™, where € = de/dt and 6, and m are material
constants. The exponent m (strain-rate sensitivity) is
found to increase with temperature, especially above the
strain recrystallization temperature. In the hot-working
region, metals tend to approach the behavior of a
Newtonian liquid for which m = 1.

Source: M.C. Shaw, Metal Cutting Principles, Clarendon Press,
Oxford, 1984, p 69
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HS.005 Microalloyed high-strength low-alloy (HSLA)
steel, compressive true stress-true plastic strain
curves at different strain rates

Hot rolled. Thermomechanical processing typically
includes rough rolling, 1100-1240 °C (2012-2264 °F),
and finish rolling, 810-900 °C (1490-1652 °F), fast
cooling to 700 °C (1292 °F), and air cooling. (a) Tested at
900 °C. (b) At 1200 °C. Composition: Fe-0.08C-1.3Mn-
0.3Si-0.2Ni-0.08V-0.05Nb-0.015P-0.008S

Source: N.S. Mishra, in Hot Working Guide A Compendium of

Processing Maps, Y.V.R.K Prasad and S. Sasidhara, Ed., ASM Inter-
national, 1997, p 337



Effect of strain rate on yield strength
1000 CS.033 1040 carbon steel, engineering stress-strain

curves with effect of strain rate

'/’;____ Effect of different strain rates on the tensile response. The

b ield d flow st t different values of strai

800 //z \¢ N yield stress and flow stresses at different values of strain
/ & “X increase with strain rate. The work-hardening rate (m), on
/ the other hand, is not as sensitive to strain rate. This

g illustrates the importance of correctly specifying the

s 600 strain rate when giving the yield stress of a metal. Not all

g metals exhibit a high strain-rate sensitivity. Aluminum

ga and some of its alloys have either 0 or —m. In general, m

8 varies between 0.02 and 0.2 for homologous temperatures

5 4% o between 0 and 0.9 (90% of melting point in K).

— 'f’ - 102’5 Therefore, one would have, at the most, an increase of

$ %" 10,3/5 15% in the yield stress by doubling the strain rate. UNS
5107 G 10400
200
Source: M.A. Meyers and K.K. Chawla, Mechanical Metallurgy:
Principles and Applications, Prentice-Hall, 1984, p 572
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Effect of strain rate on vyield strength, UTS

120 840 $S.055 310 annealed stainless steel sheet, effect of
strain rate on mechanical properties

Sheet thickness = 1.60 mm (0.063 in.). Composition: Fe-

100 700 25Cr-20.5Ni. UNS S31000
‘ . —O’/( Source: R.G. Davies and C.L. Magee, The Effect of Strain-Rate upon
Ultimate tensile strength O the Tensile Deformation of Metals, J. Eng. Mater. Technol., April 1975,
80 OO o o] 560 p 151. As published in Aerospace Structural Metals Handbook, Vol 2,
Code 1305, CINDAS/USAF CRDA Handbooks Operation, Purdue
© University, 1995, p 22
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Understanding plastic deformation of metals is necessary for controlling deformation processes

We can explain the plasticity of metals using a plasticity theory that consists of
1. Avyield function to determine when plastic flow initiates
2. Aflow model which relates the applied stress increments to the resulting plastic strain
increments
For example deformation theory relates applied stresses to strains by a dynamic modulus using
Hooke’s law:
0 = Esec
do = E,.d¢

3. Ahardening model that describes the change in the yield criterion as a function of plastic

strains
For example the isotropic hardening model assumes that strain hardening corresponds to an enlargement of the
yield surface (an increase in yield stress) without change of shape or position of the surface

Yield surface after loading

24

Initial yield surface




Multiaxial states of stress occur in all types of loadings and so do multiaxial strains

For example the strains in a tensile bar become triaxial

The state of stress around cracks is usually multiaxial and may differ from the state of stress in the
bulk of the material Uniaxial stress

For example the state of stress at the root of a thread is biaxial but it is usually uniaxial '
in the body of the bolt =

Plastic deformation occurs easier under shear stresses and the stress concentration facto
change with stress state
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Transverse Compression Strain

0.001

0.002
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Longitudinal Tensile Strain

0.004

0.008

0.012

Thickness
50 mm
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t €y g, o o,
7 0.01 [-0.005| 63.5 0
15 0.01 |-0.003| 70.6 | 14.1
30 0.01 (-0.002| 73.0 | 21.8
50 0.01 |-0.001| 75.1 | 29.3

Stress state around a crack in a material under uniaxial tension




We can apply our knowledge obtained from experimental data on the behavior of materials under
uniaxial stress (as in a tension test), to multiaxial stress conditions

For example the yield stress obtained from a stress-strain diagram can be used as a yield criterion
for materials under multiaxial stress conditions

Multiaxial stress condition may be produced by variation of the position within the bulk of the
material (there are only normal stress and strain at the surface perpendicular to the applied normal
stress)

It may also be produced from multiaxial stresses

Remember that the state od stress and strain at a point in the material can be identified by 6 stress
components and 6 strain components acting on the x, y, z planes

N Oy VO, VO, Ty
Ox E E E G
T T
— T _ Txy Lyz
o yz € G G
Tyz Oz Tyz _Vox _Voy 0y
G E E 'E

We can find stresses and strains acting in any other direction or plane by using transformation
equations or graphically using Mohr’s circle



The following parameters are of importance when analyzing the yield criteria at a certain position
in the bulk material:

e Maximum normal principal stress, gy
*  Minimum normal principal stress, o,
e Maximum shear stress, Tpqx

* Effective stress, g,

* Uniaxial yield strength, a,,
e Uniaxial ultimate strength, o,

Only a few planes experience the maximum normal stress and the maximum shearing stress
However many other planes experience a very large percentage of these quantities

N
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Yielding depends on the magnitude of the normal and shear stresses applied to a material and also
on the local stresses generated at some plane (slip-plane) within the material

Consider a planar material stressed in two directions

A state of plane stress exists at a point Q with 0, = T, = T, = 0. The state of plane stress is
defined by the stress components a,, Oy, Ty associated with the material shown:
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If the material is rotated through an angle 8 about the z axis, the stress components change to
0x', 0y, Txy' Which can be expressed in terms of gy, 0y, Ty, and 6



Consider a prismatic element with faces respectively
perpendicular to the x, y and x’ axes:

If the area of the oblique face is AA, the areas of the
vertical and horizontal faces are equal to AA cos6, and AA
sinB respectively.

The mechanical equilibrium along the x” and y’ axes
require that

YE, =0, 0, AA—0,(AAcosB)cosf —
Txy(AA cos ) sinf — g, (AAsin ) sin 6 —
Txy(AAsin@) cos8 = 0

Y E, =0, Tyy,AA + 0,(AAcos 8) sin 6 —
Txy(AA cos0) cos 8 — gy,(AAsin 8) cos 6 +
Tyy(AAsin@)sinf = 0

The first equation is solved for g, and the second for T,,,,

as
0y’ = 0y cos? 0 + o), sin® 6 + 27,,, sin O cos H

Tyryr = —(0x — 0y) sin B cos 6 + 1,y (cos? 6 — sin? 6)
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After simplifications using trigonometric substitutions we obtain the normal and shear stresses on
the rotated material as

Ox t 0y, 0yx—0y

o, = > + 5 cos 20 + T4y Sin 20
, Oy + Oy Ox — Oy _
gy = > T COS 260 — Ty, Sin 26
Oy — O
Tyryr = — =~ Ysin20 + Tyy COS 20

The expression for the normal stress ay’ is obtained by replacing 6 by the angle 6+90 that the y’
axis forms with the x axis.

Adding the two normal stresses we see that
oy + 0, =0, +o0

In the case of plane stress, the sum of the normal stresses exerted on a cubic material is
independent of the orientation of the material since 6, = g,, =0



The equations obtained for the normal and shear stresses in the rotated material under plane
stress condition are the parametric equations of a circle

If we plot a point M in the rectangular axes with the coordinates (ax’,rx,y,) for any given value of
the parameter 6, all the other possible points will lie on a circle.

” ,_0x+0y+0x—ay
X 2 ” _02
Toryr = —%sin 260 + Ty, cos 26

COS 260 + Ty, sin 26

The angle 6 in the equations can be eliminated by algebraic simplifications and addition of the two
equations:

, ax+ay2 5 ax—cryz 5

) + Tyy? = R?

= Oupe and (

! 2 2 _ p2
S0 (0x" — Oave)”™ + Tary” = R

Which is the equation of a circle of radius R centered at the point C
coordinates (G4pe, 0)




The point A where the circle intersects the horizontal axis is the maximum value of the normal
stress g, and the other intersection point B is the minimum value. Both points correspond to a
zero value of shear stress Txryr-

These are the principle stresses.

Since Omax = Ogve T R Omin = Oave — R

gy + oy Ox — 0y\?
_x "%y “x Vy 2
Omaxmin — ) + ( 5 ) + Tyy

The rotation angles that produce the principal stresses with no shear stress is obtained from the
equation of shear stress

Oy — Oy
Tyryr = —Tsm 20 + Txy COS 20 =0
0l
2T
tan 29,, =2
Oy — Oy

This equation gives two 6), values that are 90 apart. Either of them can be
used to determine the orientation of the corresponding rotated plane”m«
These planes are the principal planes of stress at point Q




Xy

The points D and E are located on the vertical diameter of the
circle corresponding to the largest numerical value of the shear
Stress Tyy. These points have the same normal stresses of
Oqve- SO the rotation that produces the maximum shear

stresses can be obtained from the normal stress equations.

(0]
Ox T O O, — O
Oy = Ogpe = x2 Y+ x2 Y 05 20 + T,y sin 26
Ox + 0y
2
Oy — O
tan2t9s=—u
2Ty

This equation gives two 6 values that are 90 apart. Either of
them can be used to determine the orientation of

corresponding rotated plane that produces the maximum
shear stress which is equal to

Ox — 052
Tmax = R = (T) + Txyz




The normal stress corresponding to the condition of maximum shear stress is

Ox t 0y
Ox = Ogpe = 2

Also

-1
O, — O _ 2T
tan 20, = —% —(tan Zé?p) = (ﬁ)
xy x Yy

This means that the angles 65 and 6), are 45 apart

So the planes of maximum shear stress are oriented at 45 to the principal planes

Example — Determine the principal planes, principle stresses, maximum shear stress and the

corresponding normal stress for the state of plane stress shown 10 MPa

_l 40 MPa

B i ; e
; 50 MPa




Maximum shear stress criterion (for ductile materials)

When a ductile material is under uniaxial stress, the value of the normal stress g, which will cause
the material to yield can be determined simply from a stress-strain diagram obtained by a tensile
test.

The material will deform plastically when g, > 0yje14
On the other hand when a material is in a state of multiaxial stress, the material may yield when
the maximum value of the shear stress exceeds the corresponding value of the shear stress in a

tensile-test specimen as it starts to yield.

Maximum shear stress criterion is based on the observation that yield in ductile materials is caused
by slippage of the material along oblique surfaces and is due primarily to shear stresses.

In the plane stress condition the material can be represented as a point under principal stresses




Recall that the maximum value of shear stress at a point under a centric axial load is equal to half
the value of the corresponding normal axial stress.

Thus at yielding
1

Tmax = 2 Oy

Also for plane stress condition if the principle stresses are both positive or both negative, the

. . 1
maximum value of the shear stress is equal to 5 | Ormax ]

Therefore lo,| > gy or  |oy| > oy

If the maximum stress is positive and the minimum stress negative, the maximum value of the

, 1
shear stress is equal to 5 (lomax| — |ominl)

Therefore (log| — lopl) > oy

These relations produce a hexagon in the xy plane, called Tresca’s hexagon. Any given state of stress
will be represented in the figure by a point.

”' 3 v

L



Prediction of yielding under multiaxial loading according to the maximum shear stress criterion involves the
analysis of the octahedral planes

There are eight octahedral planes making equal angles with the principal o /== _1-7 ____
stress directions
The shearing stress on these planes is given by

1
Toct = 5\/(01 —03)%2 + (03 — 03)? + (03 — 07)2

Or with non-principle stresses:

1
Toct = §\/(Ux — ay)z + (o) — O'Z)Z + (0, — 02)% + 6(1y,2 + T53 2 + Tpy?)

The shear strain acting on an octahedral plane is given by

2
Yoct = 5\/(51 —&)2+ (g, — &3)% + (63 — )2

Or

2 3
Yoct = § (Sx - gy)z + (gy - 52)2 + (gz - Sx)z + E (Vyz2 + yzx2 + nyz)



Maximum normal stress criterion (for brittle materials)
Brittle materials fail suddenly in a tensile test by rupture without any prior yielding.

When a brittle material is under uniaxial tensile stress, the value of the normal stress which causes
it to fail is equal to the ultimate strength of the material as determined from a tensile test.

When a brittle material is under plane stress, the principal stresses are compared to the ultimate
strength obtained from the uniaxial tensile test.

Maximum principal stress criterion states that a brittle material will fail when the maximum normal
stress exceeds the ultimate strength obtained from the uniaxial tensile test:

|oq| > oy or lop| > oy

This criterion forms a square area centered on the xy plane. The criterion is based on the
assumption that the ultimate strength of materials under tension and compression are equal,
which is an overestimation for most materials as the presence of cracks and flaws often weaken the
material under tension



Maximum distortion energy criterion is based on the determination of the distortion energy in a
ductile material, which is the energy consumed by a change in the shape of the material.

Also called von Mises criterion, it states that a material will yield when the maximum value of the
distortion energy per unit volume exceeds the distortion energy per unit volume required to cause
yield in a tensile test specimen.

The distortion energy in an isotropic material under plane stress is

1

6G (Ua — 0q0p t+ sz)

Ug =

In the case of a tensile test specimen yielding at oy

1
U o
Ty,
Thus the maximum distortion energy criterion indicates that the mate Fo, A

042 — 040, + 0,2 > oy ?

This equation produces an ellipse in the principal stress plane




It is useful to convert the multiaxial stress state to an equivalent stress

The equivalent or effective stress is the uniaxial stress that is equally )
distant from the yield surface or located on it Vi N

-~ -plane
(Deviatoric Plare )
oy +op+a3=0

02

The effective stress or the stress intensity for an elastic material is expressed as

V2
Oeff = 7\/(% - Uy)z + (Gy - GZ)Z + (0, —0x)* + 6(Tyz2 + Tt + Txyz)

And the effective strain as

V2 3
Eeff = m (gx o g)’)z + (gy - 82)2 + (g, — &)% + E(yyzz + Vax + nyz)

And Jeff = Egeff



The von Mises vield criterion is given by

V(01 = 02)2 + (92 = 03)% + (03 — 01)? = 20,
Or

\/(ax — ay)z + (O'y — O'Z)z + (0, —0,)% + 6(Ty22 + 1,2 + Txyz) = 20,

In terms of effective stress the criterion is

1

Oeff = \/E\/(O-l —03)? + (0, — 03)* + (03 —01)* = 0,

V2
Oeff = 7\/(0’,( — ay)z + (O'y — O'Z)Z + (0, — 0,)% + 6(Ty22 + 7,2 + Txyz) = o,

For plane states of stress, the yield condition is the interaction of the cylinder with the principal
stress plane, which is a yield ellipse

Notice that the von Mises criterion takes into account the octahedral shear stress

Toct = §\/(01 — 03)% + (03 — 03)% + (03 — 07)2

1
Toct = 5\/(0,5 — ay)z + (ay — O'Z)Z + (0, — 0,)% + 6(Ty22 + 7,2+ Txyz)



The von Mises vield criterion is visualized as a circular cylinder in the stress space

g1 i .
Von Mises 6> v Body subjected to principal stresses :

Yel Surface

R

z - .
-’ H
\ O\'——""" ydrostatic 1
U=3(0,6+0,6,+0,¢;)

Yokl Sface U=1/2E [0,%2 + 0,2+ 03%-2vV(0,0,+ 0,05+ 0,0;)]

v" For the onset of yielding :

s
Y?/2E=1/2E [0,%® + 0,2+ 03% -2V (0,0,+ 0,05+ 0,0;)]
“ oplane v Yield function
(Deviatorie Plare ) TR A T 2
f =07 +0, +03 —v(0,0, +0,0,+0,0,)-Y

oy +ar+a;3=0

f=0-Y?

P

Yielding=> f = 0, safe f <0

The axis of the cylinder passes through the origin of the coordinates for unyielded material

It is inclined equal amount to the three axes and represents pure hydrostatic stress for elastic

deformations.



Yield criteria for deformation of metals under plane stress
Sa1/Sy

——— Octahedral shear stress
1.2

~——-— Maximum shear stress

o) =TT (e Principal stress
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-06
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-0.8

HRE s

The data for the mild steel and Cr-V steel which behave in a ductile manner agree well with the
octahedral shear stress (von Mises) criterion

Data for cast iron which behaves in a brittle manner, agrees better with the maximum principal
stress criterion:



Example — Evaluate the yielding stress condition for a ductile cast iron using maximum shear stress, maximum

principal stress and maximum distortion energy criteria.

|0a| >0y or op| >0y or  (log| = lop|) > oy

lo,| >0y or lay| > oy

aaz — 0,0p + Jbz > O'YZ
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